\(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx\) [201]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 135 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

2*C*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-(A+C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/co
s(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2*A*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1
/2)

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {3123, 3061, 2861, 211, 2853, 222} \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(2*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*S
in[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + (2*A*Sin[c + d*x])/(d*Sqrt[
Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {-\frac {a A}{2}+\frac {1}{2} a C \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{a} \\ & = \frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+(-A-C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx+\frac {C \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{a} \\ & = \frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(2 C) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a d}+\frac {(2 a (A+C)) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 3.80 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.74 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (5 C \left (\sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )-\frac {2 \sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )+\frac {(A+C) \csc ^3\left (\frac {1}{2} (c+d x)\right ) \left (5 \cos ^2(c+d x) (2+\cos (c+d x)) \left (1-\cos (c+d x)+\text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )-\operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right ) \sin ^2(c+d x)\right )}{2 \cos ^{\frac {5}{2}}(c+d x)}\right )}{5 d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(2*Cos[(c + d*x)/2]*(5*C*(Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] - (2*Sin[(c + d*x)/2])/Sqrt[Cos[c + d*x]])
+ ((A + C)*Csc[(c + d*x)/2]^3*(5*Cos[c + d*x]^2*(2 + Cos[c + d*x])*(1 - Cos[c + d*x] + ArcTanh[Sqrt[-(Sec[c +
d*x]*Sin[(c + d*x)/2]^2)]]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]) - Hypergeometric2F1[2, 5/2, 7/2, -(Sec[c + d
*x]*Sin[(c + d*x)/2]^2)]*Sin[(c + d*x)/2]^4*Sin[c + d*x]^2))/(2*Cos[c + d*x]^(5/2))))/(5*d*Sqrt[a*(1 + Cos[c +
 d*x])])

Maple [A] (verified)

Time = 13.56 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.30

method result size
default \(\frac {\left (A \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \cos \left (d x +c \right )+C \cos \left (d x +c \right ) \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+2 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+2 C \cos \left (d x +c \right ) \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(176\)
parts \(\frac {A \left (\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sqrt {2}\, \sin \left (d x +c \right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}\, a}+\frac {C \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a}\) \(240\)

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(A*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))*cos(d*x+c)+C*cos(d*x+c)*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+2*A
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+2*C*cos(d*x+c)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)))*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos(d*x+c)^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 1.03 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.33 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} A \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, {\left (C \cos \left (d x + c\right )^{2} + C \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right )^{2} + {\left (A + C\right )} a \cos \left (d x + c\right )\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(2*sqrt(a*cos(d*x + c) + a)*A*sqrt(cos(d*x + c))*sin(d*x + c) - 2*(C*cos(d*x + c)^2 + C*cos(d*x + c))*sqrt(a)*
arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + sqrt(2)*((A + C)*a*cos(d*x + c)^2
 + (A + C)*a*cos(d*x + c))*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/
sqrt(a))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/(sqrt(a*(cos(c + d*x) + 1))*cos(c + d*x)**(3/2)), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.95 (sec) , antiderivative size = 1364, normalized size of antiderivative = 10.10 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

((2*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - 2*(cos(d*x + c) - 1)*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*arctan2(((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 -
sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos
(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) -
 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2
*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c
) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I
*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c
)^2 - 4*cos(d*x + c) + 1)^(1/4)*sqrt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c)
+ 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c
) + 1)^2)) + sqrt(a)*cos(d*x + c) - sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1))))*A/((cos(2*d*x + 2*c)^2 + sin
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a)) - (sqrt(2)*sqrt(a)*arctan2(((abs(2*e^(I*d*x + I*c) +
2)^4 + 16*cos(d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(2*
e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(
d*x + c)^2 - 64*cos(d*x + c) + 16)^(1/4)*sin(1/2*arctan2(8*(cos(d*x + c) - 1)*sin(d*x + c)/abs(2*e^(I*d*x + I*
c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(
I*d*x + I*c) + 2)^2)) + 2*sin(d*x + c))/abs(2*e^(I*d*x + I*c) + 2), ((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*
x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(2*e^(I*d*x + I*c)
+ 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*
cos(d*x + c) + 16)^(1/4)*cos(1/2*arctan2(8*(cos(d*x + c) - 1)*sin(d*x + c)/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(
2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2
)^2)) + 2*cos(d*x + c) - 2)/abs(2*e^(I*d*x + I*c) + 2)) - sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*
c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c),
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1)) + cos(d*x + c)))*C/a)/d

Giac [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(1/2)), x)